
The com.lihaoyi Ecosystem
Executable Scala Pseudocode that’s

 Easy, Boring and Fast!
Li Haoyi, Scaladays Seattle 7 June 2023

About Haoyi

Been using Scala since 2012

Work on the Databricks Developer Platform

Lots of Scala OSS work: Scala.js, Mill,
Ammonite, uPickle, Fastparse, …

Author of Hands-on Scala Programming

Executable Scala Pseudocode that’s Easy, Boring and Fast!

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

1.1 What is the com.lihaoyi Ecosystem?(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

The com.lihaoyi ecosystem is a collection of small libraries and tools that I’ve built up
over the past decade. It includes many of the fundamentals that you would need to do
any sort of software engineering work: data serialization, HTTP clients and servers,
filesystem operations, and so on

All under https://github.com/com-lihaoyi,
separate from https://github.com/lihaoyi

1.1 What is the com.lihaoyi Ecosystem?(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

These libraries, originally on my personal github and published under my personal
Maven Central account, are under a com-lihaoyi github organization, with a number of
maintainers.

https://github.com/com-lihaoyi
https://github.com/lihaoyi

All under https://github.com/com-lihaoyi,
separate from https://github.com/lihaoyi

Good amount of usage

1.1 What is the com.lihaoyi Ecosystem?(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

We get about 18 million downloads a month on Maven Central. This is certainly far
less than other more well-known Scala ecosystems, but it does indicate that these
libraries do get a good amount of usage in the wild.

https://github.com/com-lihaoyi
https://github.com/lihaoyi

All under https://github.com/com-lihaoyi,
separate from https://github.com/lihaoyi

Good amount of usage

Largely a self-contained ecosystem

1.1 What is the com.lihaoyi Ecosystem?(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

Lastly, the ecosystem is largely self-contained. We do not pull in heavy dependencies
on things like Akka or Cats or ZIO. This keeps the total amount of “stuff” you need to
know to use these libraries tightly bounded. This makes them an easy way to get
started productively with Scala before perhaps graduating to more sophisticated
frameworks.

This helps make these libraries broadly applicable. Whether you come from an Akka
background, or Pure FP, or learning Scala for the first time, there is definitely
something here you could make use of

https://github.com/com-lihaoyi
https://github.com/lihaoyi

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

body(

 div(

 h1(id:="title", "This is a title"),

 p("This is a big paragraph of text")

)

)

<body>

 <div>

 <h1 id="title">This is a title</h1>

 <p>This is a big paragraph of text</p>

 </div>

</body>

1.2 What is the com.lihaoyi Ecosystem?

Let’s do a short tour of the com.lihaoyi libraries. I have listed the most notable ones
here on the left, starting from Scalatags which was released in 2012

Scalatags is a small HTML generation library, letting you write nested method calls
(body, div, h1, etc.) with attributes (such as id) that render into HTML snippets you can
include on your website

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

def eval(tree: (Int, Seq[(String, Int)])): Int = ???

def number[$: P] =
 P(CharIn("0-9").rep(1).!).map(_.toInt)

def parens[$: P] = P("(" ~/ addSub ~ ")")
def factor[$: P] = P(number | parens)

def divMul[$: P] =
 P(factor ~ (CharIn("*/").! ~/ factor).rep).map(eval)

def addSub[$: P] =
 P(divMul ~ (CharIn("+\\-").! ~/ divMul).rep).map(eval)

def expr[$: P]: P[Int] = P(addSub ~ End)

fastparse.parse("((1+1*2)+(3*4*5))/3", expr(_))
// Parsed.Success(21, _)

1.3 What is the com.lihaoyi Ecosystem?

We have FastParse, introduced in 2014. This is a parser combinator library, similar to
Scala’s old standard library parser combinators: you can basically write out the
grammar of the thing you want to parse - number is a char in 0-9 repeated more than
once, parens is an “(“ followed by something followed by a “)”. FastParse stands out
over other parsing libraries with great error messages, and great performance: ~300x
faster than the std lib parser combinators.

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

object HelloTests extends TestSuite{

 val tests = Tests{

 test("test1"){

 throw new Exception("test1")

 }

 test("test2"){

 val a = List[Byte](1, 2)

 assert(a(0) == 1)

 }

 }

}

1.4 What is the com.lihaoyi Ecosystem?

We have uTest, a minimal testing framework for writing and running unit tests.

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

// JSON

write(Seq(1, 2, 3)) ==> "[1,2,3]"

read[Seq[Int]]("[1,2,3]") ==> List(1, 2, 3)

// MsgPack

writeBinary(Seq(1, 2, 3)) ==>

 Array[Byte](0x93, 0x01, 0x02, 0x03)

1.5 What is the com.lihaoyi Ecosystem?

uPickle, a JSON and binary data serialization library for all your Scala data structures
and case classes

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

1.6 What is the com.lihaoyi Ecosystem?

Ammonite, a fancy Scala REPL: with syntax-highlighted multi-line input,
syntax-highlighted nicely-formatted multi-line output, and many other quality of life
features

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

def log(foo: String)

 (implicit line: sourcecode.Line,

 file: sourcecode.File) = {

 println(

 s"${file.value}:${line.value} $foo"

)

}

log("Foooooo")

// src/test/scala/Tests.scala:86 Foooooo

1.7 What is the com.lihaoyi Ecosystem?

Sourcecode: implicits that provide source-level information such as line numbers and
file names of a callsite. Great for things like logging libraries, letting you immediately
see where in the codebase a logging message is coming from rather than needing to
grep the message string

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 def ivyDeps = Agg(

 ivy"com.lihaoyi::scalatags:0.8.2",

 ivy"com.lihaoyi::mainargs:0.4.0"

)

}

$./mill foo.compile

compiling 1 Scala source...

$./mill foo.assembly

$./out/foo/assembly.dest/out.jar --text hello

<h1>hello</h1>

1.8 What is the com.lihaoyi Ecosystem?

Mill: a build tool that lets you write normal Scala objects, traits, and method definitions
to build/test/run your project in an incremental and parallel fashion

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

1.9 What is the com.lihaoyi Ecosystem?

PPrint: the output formatting logic of Ammonite extracted into a standalone library, so
you can easily add syntax highlighting and nice multi-line formatting for e.g. logging in
your own project

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

val wd = os.pwd / "out" / "splash"

// Read/write files

os.write(wd / "file.txt", "hello")

os.read(wd / "file.txt") ==> "hello"

// Perform filesystem operations

os.copy(wd / "file.txt", wd / "new.txt")

// Invoke subprocesses

val invoked = os

 .proc("cat", wd / "file.txt", wd / "new.txt")

 .call(cwd = wd)

1.10 What is the com.lihaoyi Ecosystem?

OS-Lib: a library to make it very easy to manipulate files and subprocesses

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

val r = requests.get(

 "https://api.github.com/users/lihaoyi"

)

r.statusCode

// 200

r.headers("content-type")

// Buffer("application/json; charset=utf-8")

r.text

// {"login":"lihaoyi",

// "Id":934140,

// "node_id":"MDQ6VXNlcjkzNDE0MA==",

// ...

1.11 What is the com.lihaoyi Ecosystem?

Requests-Scala: a library for making HTTP requests

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

object Application extends cask.MainRoutes{

 @cask.get("/")

 def hello() = {

 "Hello World!"

 }

 @cask.post("/do-thing")

 def doThing(request: cask.Request) = {

 request.text().reverse

 }

 initialize()

}

1.12 What is the com.lihaoyi Ecosystem?

Cask: a small HTTP MicroFramework, letting you just annotate a few methods to turn
them into a web server

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build Tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

object Main{

 @main

 def run(foo: String,

 num: Int = 2,

 bool: Flag) = {

 println(foo * myNum + " " + bool.value)

 }

 def main(args: Array[String]): Unit =

 ParserForMethods(this).runOrExit(args)

}

$./mill example.hello --foo hello

hellohello false

$./mill example.hello --foo hello --num 3 --bool

hellohellohello true

1.13 What is the com.lihaoyi Ecosystem?

MainArgs: a CLI argument parsing library, letting you take a normal Scala method and
annotate it with @main to turn it into a proper CLI main method with – flags, optional
flags, help text, and so on.

There are other libraries in the com.lihaoyi ecosystem, but these are the most notable
and interesting ones. Does anyone here use any of them?

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

We have done a quick tour of what the com.lihaoyi ecosystem is,

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

Let’s take a look at what it is not

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

2.1 Python Fanfic?

Is the com.lihaoyi ecosystem Python fanfic, for people who want to write Python but
are stuck writing Scala?

2.1 Python Fanfic?
write(Seq(1, 2, 3)) ==> "[1,2,3]"

pprint.pprintln(Seq(1, 2, 3))

val r = requests.get(

 "https://api.github.com/users/lihaoyi"

)

@cask.get("/")

def hello() = {

 "Hello World!"

}

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

Yes, it is true that many libraries are inspired by python, or even carbon-copies of their
Python equivalent. uPickle is a clone of pythons pickle/json, Ammonite is a clone of
iPython. PPrint is a clone of, well pprint and requests-scala is a clone of Python’s
requests.

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

2.1 Python Fanfic?
body(

 div(

 h1(id:="title", "This is a title"),

 p("This is a big paragraph of text")

)

)

def number[$: P] =

 P(CharIn("0-9").rep(1).!).map(_.toInt)

def parens[$: P] = P("(" ~/ addSub ~ ")")

def factor[$: P] = P(number | parens)

object foo extends RootModule with ScalaModule

But there are a lot of libraries in com.lihaoyi that are most definitely not Pythonic. You
would not find Scalatags-style HTML templating in Python, nor would you find
Fastparse-style parser combinators. The example at the bottom demonstrates how
Mill lets you define modules in your project build by using stackable traits. These are
all theoretical possible in Python - Python does support nested method calls, operator
overloading, and multiple inheritance - but it is not a Pythonic thing to do, and these
libraries are definitely not something cloned from the Python ecosystem

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

2.2 Scala.js Libraries?

How about Scala.js? Is the com.lihaoyi ecosystem just for use in Scala.js?

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

2.2 Scala.js Libraries?

In the past, yes: the initial impetus for many of these libraries was to provide a
Scala.js ecosystem, at a time when there was none.

In fact, for many years, libraries like Scalatags, uTest, and uPickle were the *only*
ways to do HTML templating, testing and serializing data in Scala.js

(2012) Scalatags: HTML Generation Library

(2014) FastParse: Fast Parser Combinators

(2014) uTest: Minimal Testing Library

(2014) uPickle: JSON & Binary Serialization Library

(2015) Ammonite: Fancy Scala REPL

(2016) Sourcecode: source file-name/lines/etc.

(2017) Mill: Better Scala Build tool

(2017) PPrint: Pretty-Printing Library

(2018) OS-Lib: Filesystem/Subprocess Library

(2018) Requests-Scala: HTTP Request Library

(2018) Cask: HTTP Micro-Framework

(2020) MainArgs: CLI Argument Parsing Library

2.2 Scala.js Libraries?

But that’s no longer the case. While com.lihaoyi continues to support Scala.js
whenever possible, many - or even most - of the libraries are not Scala.js specific.
Ammonite, OS-Lib, MainArgs, etc. don’t even work on Scala.js. Even for the original
set of libraries, their importance to Scala.js has also waned over, as more of the
broader ecosystem has also picked up support for the Scala.js platform.

Even though com.lihaoyi started off as *the* Scala.js ecosystem, both it and Scala.js
has since grown beyond that

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

3. Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

These principles have actually been hiding in plain sight, from the first slide. To
summarize the com.lihaoyi ecosystem in one line, it is to use Scala as Executable
Pseudocode that’s Easy, Boring, and Fast!

This isn’t just a catchy tagline. Let’s break it down.

3.1 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

First, executable pseudocode. Pseudocode is code that may not actually run, but
matches closely with your mental model of the problem. This makes it excellent for
exploring a problem space or discussing things with other people. “Executable”
pseudocode means you can take what it’s your head, write it down, and directly run it
without first translating it into a “real” programming language.

Executable pseudocode is great not just because it’s easy to write, but because it’s
easy to read: someone who comes to your quick script 10 years in future who may
not even know the same programming language could guess what your code is
doing, and guess correctly.

When you say “Executable Pseudocode”, people often think of Python.

Scala is as concise as Python. In many ways, it’s even more concise. It’s better at the
“Executable” part: it executes faster, so you don’t need to rewrite parts of your
program in C when you need to productionize it. It has better tooling on the JVM, with
a good story for deployment and distribution. It has compile-time checks, so is safer to
execute without blowing up at runtime due to dumb typos.

Why not Scala?

3.1.1 Executable Pseudocode: HTTP Requests

Imagine for a moment you are in an interview. Maybe you just got laid off, maybe
you’re just exploring the job market. You are in a small room with someone who just
asked you to write a web crawler or a github issue migrator or some other such
programming challenge.

You’ve sketched out the skeleton of your solution, and it’s time to make a HTTP
request. It’s just a whiteboard, so it doesn’t need to actually work, but you’d just write
pseudocode: what makes the most sense both to *you* and to the interviewer. What
do you write?

3.1.1 Executable Pseudocode: HTTP Requests
import akka.actor.typed.ActorSystem

import akka.actor.typed.scaladsl.Behaviors

implicit val system =

 ActorSystem(Behaviors.empty, "SingleRequest")

implicit val executionContext = system.executionContext

Do you start off by importing a bunch of stuff, defining an actorsystem, configuring it’s
behaviors, and then extracting it’s executioncontext?

3.1.1 Executable Pseudocode: HTTP Requests
import akka.actor.typed.ActorSystem

import akka.actor.typed.scaladsl.Behaviors

import akka.http.scaladsl.Http

import akka.http.scaladsl.model._

implicit val system =

 ActorSystem(Behaviors.empty, "SingleRequest")

implicit val executionContext = system.executionContext

val responseFuture = Http()

 .singleRequest(HttpRequest(uri = "http://akka.io"))

Then importing a HTTP DSL, that you can use to make a HTTP request?

3.1.1 Executable Pseudocode: HTTP Requests
import akka.actor.typed.ActorSystem

import akka.actor.typed.scaladsl.Behaviors

import akka.http.scaladsl.Http

import akka.http.scaladsl.model._

import scala.util.{ Failure, Success }

implicit val system =

 ActorSystem(Behaviors.empty, "SingleRequest")

implicit val executionContext = system.executionContext

val responseFuture = Http()

 .singleRequest(HttpRequest(uri = "http://akka.io"))

responseFuture.onComplete {

 case Success(res) => println(res)

 case Failure(_) => sys.error("something wrong")

}

And then importing Success and Failure cases and then finally doing something with
the result of the request?

Would you write all this on whiteboard? Of course not. All this stuff is irrelevant to the
initial problem at hand. Sure you might need to configure it later, tweaking thread
counts or sharing execution contexts and so on, but that’s not essential to the problem
we want to discuss. If this is not what you would write on the whiteboard, what would
you write?

3.1.1 Executable Pseudocode: HTTP Requests
import akka.actor.typed.ActorSystem

import akka.actor.typed.scaladsl.Behaviors

import akka.http.scaladsl.Http

import akka.http.scaladsl.model._

import scala.util.{ Failure, Success }

implicit val system =

 ActorSystem(Behaviors.empty, "SingleRequest")

implicit val executionContext = system.executionContext

val responseFuture = Http()

 .singleRequest(HttpRequest(uri = "http://akka.io"))

responseFuture.onComplete {

 case Success(res) => println(res)

 case Failure(_) => sys.error("something wrong")

}

val res = requests.get("https://akka.io")

println(res)

Probably you would write something like this. You need to make a GET request, so
call requests.get and pass it the URL. Then you’d use the response. End of story.

This is executable code, using requests-scala.

3.1.2 Executable Pseudocode: CLI Entrypoint

Imagine you just hired a new intern, and their first job is to write a small command line
tool. You’re trying to explain what this command line tool is going to do, what flags it
will take, on a piece of paper at your intern’s desk. What do you write on this piece of
paper?

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

You might start off defining a Config case class defining the inputs.

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

Would you follow that up by creating a builder that is a parser builder for that config?

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

And then define another lower-case parser, separate from the first capital-P parser,
that then imports the builder, then use the capital-P parser again to do a whole bunch
of stuff that mostly duplicates the code you wrote already in the config case class?

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

val parsed = OParser.parse(parser1, args, Config())

for(Config(foo, num, bool) <- parsed){

 println(foo * num + " " + bool.value)

}

And then finally using the capital-P parser to parse the lowercase-p parser along with
the arguments, and a dummy config value, to finally parse out the values you can use

Now, this all makes sense from a software engineering perspective: builder patterns,
functional combinators, separation of concerns, etc.. But many of those things are
“internal” details: relevant to the implementation of the CLI parsing library, but
irrelevant to the task at hand. That’s why you’re not going to write all this down on the
piece of paper you give your intern to use as a reference for what they need to do.

So what would you write?

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

val parsed = OParser.parse(parser1, args, Config())

for(Config(foo, num, bool) <- parsed){

 println(foo * num + " " + bool.value)

}

def run

If you’re like me, since you’re trying to explain what the CLI tool’s main method is
meant to do, you would start by defining the method. That means “def”, followed by a
name. Maybe “main” or “run”

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

val parsed = OParser.parse(parser1, args, Config())

for(Config(foo, num, bool) <- parsed){

 println(foo * num + " " + bool.value)

}

def run(foo: String, num: Int = 2, bool: Flag)

You’d then define what the arguments to the CLI tool are, what their types are, and if
any of them are optional and take default values

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

val parsed = OParser.parse(parser1, args, Config())

for(Config(foo, num, bool) <- parsed){

 println(foo * num + " " + bool.value)

}

def run(foo: String, num: Int = 2, bool: Flag) = {

 println(foo * num + " " + bool.value)

}

And then you’d use it to do the thing you want to do. End of story.

3.1.2 Executable Pseudocode: CLI Entrypoint
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

val parsed = OParser.parse(parser1, args, Config())

for(Config(foo, num, bool) <- parsed){

 println(foo * num + " " + bool.value)

}

@main

def run(foo: String, num: Int = 2, bool: Flag) = {

 println(foo * num + " " + bool.value)

}

ParserForMethods(this).runOrExit(args)

That’s basically what the com.lihaoyi mainargs library lets you do.

Sure you have to annotate it with @main, and you have to at some point call
something to pass the args from the *real* main method to it, but overall it lets you
take pseudocode you may sketch out on a piece of paper during your intern’s
onboarding, annotate it, and turn it into executable code. That’s executable
pseudocode.

3.1.3 Executable Pseudocode:
case class Config(foo: String = null,

 num: Int = 2,

 bool: Boolean = false)

val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

val parsed = OParser.parse(parser1, args, Config())

for(Config(foo, num, bool) <- parsed){

 println(foo * num + " " + bool.value)

}

import akka.actor.typed.ActorSystem

import akka.actor.typed.scaladsl.Behaviors

import akka.http.scaladsl.Http

import akka.http.scaladsl.model._

import scala.util.{ Failure, Success }

implicit val system =

 ActorSystem(Behaviors.empty, "SingleRequest")

implicit val executionContext = system.executionContext

val responseFuture = Http()

 .singleRequest(HttpRequest(uri = "http://akka.io"))

responseFuture.onComplete {

 case Success(res) => println(res)

 case Failure(_) => sys.error("something wrong")

}

These examples perhaps highlight the traditional problem with Scala as Executable
Pseudocode. The language is fine, and can be made concise and understandable.
But the libraries have traditionally been verbose and clunky.

So while snippets of pure-scala on slides look great, defining a linked list or fibonacci
sequence or something, any Scala that actually has to do something is just as ugly
and verbose as Java code! People like making fun of Java for being verbose, but
ArgParse4j would actually look not much uglier than the Scopt code on the left, and
Apache HTTP Client would look not much more verbose than the Akka HTTP code on
the right.

It’s a different style of ugly, with a different set of design patterns making it verbose -
implicits and combinators rather than builder patterns and visitors - but ugly and
verbose all the same. Scala needs to do better

3.1.4 Executable Pseudocode in the com.lihaoyi libraries
// mainargs

@mainargs.main

def run(foo: String, num: Int = 2, bool: Flag) = {

 println(foo * num + " " + bool.value)

}

// cask

@cask.get("/user/:userName")

def showUserProfile(userName: String) = {

 s"User $userName"

}

// uPickle

upickle.default.write(Seq(1, 2, 3))

// requests

val resp = requests.get("http://akka.io")

// os-lib

os.proc("grep", "Data")

 .call(

 stdin = resp,

 stdout = os.pwd / "Out.txt"

)

// Mill

def lineCount = T{

 allSourceFiles()

 .map(f => os.read.lines(f.path).size)

 .sum

}

com.lihaoyi libraries all look very different from traditional Scala libraries, as shown by
these examples. They also look very similar to each other. By and large, they revolve
around Scala method defs and Scala method calls, with a sprinkling of annotations for
customization

These all match more or less how a developer would think of the problem:
1. A main method taking CLI arguments is a method that takes parameters.
2. HTTP get and post endpoints are methods that take parameters.
3. Making HTTP requests or subprocess operations are just method calls that

you pass parameters

Note what we *don’t* see here: DSLs, implicits, inheritance, builder patterns, config
objects, wrappers, adapters, registries, visitors, etc. Even imports are minimized

That’s not to say that these things aren’t used: all of these libraries make heavy use of
the those design patterns in their implementation. But they make sure to wrap them
up nicely such that for users who don’t *want* to care about these implementation
detail, they don’t *need* to. A typical user gets reasonable defaults and a simple API,
letting them write code almost as simple as the code they write on a whiteboard.
Advanced customization is available, but not forced upon those users who do not
need it.

3.1 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

3.2 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

The next point to discuss is Easy.

“Simple Not Easy” is a meme that originated in a talk by the author of the Clojure
programming language. What it means “Simplicity” is more about fundamental
simplicity, that the whole system from top-to-bottom is made of a small number of
orthogonal concepts. “Easy” is more about familiarity, about polish, and molding your
product closely to a specific use case.

Some people say Scala is already very Simple. Martin Odersky likes saying that Scala
has a very small grammar, and he’s right. Scala does have a relatively small number
of orthogonal features. It’s already Simple. What’s missing from Scala is *Easy*

3.2.1 Easy, not Simple
def string[$: P] =

 P(space ~ "\"" ~/ (strChars | escape).rep.! ~ "\"")

 .map(Js.Str.apply)

def array[$: P] =

 P("[" ~/ jsonExpr.rep(sep=","./) ~ space ~ "]")

 .map(Js.Arr(_:_*))

def pair[$: P] = P(string.map(_.value) ~/ ":" ~/ jsonExpr)

def obj[$: P] =

 P("{" ~/ pair.rep(sep=","./) ~ space ~ "}")

 .map(Js.Obj(_:_*))

Consider the following FastParse code, a snippet from the example JSON parser. It
might look a bit cryptic at first, but it’s not that different from other Scala parser
combinator libraries, e.g. the one that used to be in the standard library. `string` is
made of a quote followed by string characters followed by a closing quote. `array` is
made of an open bracket followed by comma-separated expressions followed by a
closing bracket. And so on. There are some details involved: `.!`s to capture things,
`.map`s to turn them into case classes, some spaces sprinkled around so you can
parse JSON that’s not minified. But overall it still closely matches how you would think
of a formal grammar

3.2.1 Easy, not Simple
def string[$: P] =

 P(space ~ "\"" ~/ (strChars | escape).rep.! ~ "\"")

 .map(Js.Str.apply)

def array[$: P] =

 P("[" ~/ jsonExpr.rep(sep=","./) ~ space ~ "]")

 .map(Js.Arr(_:_*))

def pair[$: P] = P(string.map(_.value) ~/ ":" ~/ jsonExpr)

def obj[$: P] =

 P("{" ~/ pair.rep(sep=","./) ~ space ~ "}")

 .map(Js.Obj(_:_*))

@ fastparse.parse("""["1", "2",]""", array(_))

Failure at index: 11, found: ..."]"

expected: (obj | array | string | true | false | null | number)

Just by writing what’s effectively the language grammar, FastParse doesn’t just give
you a high-performance parser, but it also gives you excellent error reporting, for free.
For example, if I forget an entry in my array and put a closing bracket after the
comma, I immediately get an error message with the offset in the string, what
characters it found, and what it was expecting to find.

Simple parser definition, fast performance (~300x faster than
scala-parser-combinators), good error messages. That is exactly what someone
parsing something wants. That’s *Easy*

3.2.1 Easy, not Simple
def string[$: P] =

 P(space ~ "\"" ~/ (strChars | escape).rep.! ~ "\"")

 .map(Js.Str.apply)

def array[$: P] =

 P("[" ~/ jsonExpr.rep(sep=","./) ~ space ~ "]")

 .map(Js.Arr(_:_*))

def pair[$: P] = P(string.map(_.value) ~/ ":" ~/ jsonExpr)

def obj[$: P] =

 P("{" ~/ pair.rep(sep=","./) ~ space ~ "}")

 .map(Js.Obj(_:_*))

@ fastparse.parse("""["1", "2",]""", array(_))

Failure at index: 11, found: ..."]"

expected: (obj | array | string | true | false | null | number)

final class ParsingRun[+T](

 val input: ParserInput,

 val startIndex: Int,

 val originalParser: ParsingRun[_] => ParsingRun[_],

 val traceIndex: Int,

 val instrument: Instrument,

 // Mutable vars below:

 var terminalMsgs: Msgs,

 var aggregateMsgs: Msgs,

 var shortMsg: Msgs,

 var lastFailureMsg: Msgs,

 var failureStack: List[(String, Int)],

 var isSuccess: Boolean,

 var logDepth: Int,

 var index: Int,

 var cut: Boolean,

 var successValue: Any,

 var verboseFailures: Boolean,

 var noDropBuffer: Boolean,

 val misc: collection.mutable.Map[Any, Any])

Internally, Fastparse is not simple. On the right is the data structure representing the
internal workings of FastParse: the parsing, backtracking, error reporting, etc.

3.2.1 Easy, not Simple
def string[$: P] =

 P(space ~ "\"" ~/ (strChars | escape).rep.! ~ "\"")

 .map(Js.Str.apply)

def array[$: P] =

 P("[" ~/ jsonExpr.rep(sep=","./) ~ space ~ "]")

 .map(Js.Arr(_:_*))

def pair[$: P] = P(string.map(_.value) ~/ ":" ~/ jsonExpr)

def obj[$: P] =

 P("{" ~/ pair.rep(sep=","./) ~ space ~ "}")

 .map(Js.Obj(_:_*))

@ fastparse.parse("""["1", "2",]""", array(_))

Failure at index: 11, found: ..."]"

expected: (obj | array | string | true | false | null | number)

final class ParsingRun[+T](

 val input: ParserInput,

 val startIndex: Int,

 val originalParser: ParsingRun[_] => ParsingRun[_],

 val traceIndex: Int,

 val instrument: Instrument,

 // Mutable vars below:

 var terminalMsgs: Msgs,

 var aggregateMsgs: Msgs,

 var shortMsg: Msgs,

 var lastFailureMsg: Msgs,

 var failureStack: List[(String, Int)],

 var isSuccess: Boolean,

 var logDepth: Int,

 var index: Int,

 var cut: Boolean,

 var successValue: Any,

 var verboseFailures: Boolean,

 var noDropBuffer: Boolean,

 val misc: collection.mutable.Map[Any, Any])

Everyone here knows that dealing with mutable state is not simple. FastParse
internally uses tons of mutable state. I’ve highlighted it in red just so you can’t miss it.
FastParse internals are not simple, and are actually really confusing, precisely due to
all this mutable state. To top things off, all this is hidden under a thick layer of Macros,
implemented twice for Scala 2 and Scala 3.

If you watched Daniel’s talk on micro-optimization yesterday, FastParse uses all the
tricks internally, and many more, while still presenting a facade of a pure-functional
combinator API

However, this complexity is not for nothing: it is precisely this complexity that makes
FastParse so much faster than the alternatives, 300x faster than Scala Parser
Combinators, while providing such good error messages. FastParse is not *Simple*,
but using FastParse is definitely *Easy*

3.2.2 Easy, not Simple
@main

def run(foo: String, num: Int = 2, bool: Flag) = {

 println(foo * num + " " + bool.value)

}

ParserForMethods(this).runOrExit(args)

Next, let’s revisit the mainargs example I showed earlier: we annotate a method with
`@main`, and then call `ParserForMethods.runOrExit`. That’s easy enough. But
what’s happening under the hood?

3.2.2 Easy, not Simple
@main

def run(foo: String, num: Int = 2, bool: Flag) = {

 println(foo * num + " " + bool.value)

}

ParserForMethods(this).runOrExit(args)

def run(foo: String, num: Int = 2, bool: Flag) = {

 println(foo * num + " " + bool.value)

}

ParserForMethods(

 Seq(

 MainData(

 name = "run",

 argSigs0 = Seq(

 ArgSig[String](Some("foo"), default = None),

 ArgSig[Int](Some("num"), default = Some(2)),

 ArgSig[Flag](Some("bool"), default = None),

),

 invoke = {

 case Seq(foo: String, num: Int, bool: Boolean) =>

 this.run(foo, num, bool)

 }

)

)

).runOrExit(args)

Under the hood, `ParserForMethods` expands into the following code (slightly
simplified). As you can see, it’s a relatively verbose, but straightforward data structure:
the name of the method, a list of `ArgSig`s with types and metadata, an `invoke`
callback which lets you take the parsed arguments and passes them to the actual
`run` method we want to execute

3.2.2 Easy, not Simple
val builder = OParser.builder[Config]

val parser1 = {

 import builder._

 OParser.sequence(

 programName("run"),

 opt[String]("foo")

 .required()

 .action((x, c) => c.copy(foo = x)),

 opt[Int]("num")

 .action((x, c) => c.copy(num = x)),

 opt[Unit]("bool")

 .action((_, c) => c.copy(bool = true))

)

}

val parsed = OParser.parse(parser1, args, Config())

for(Config(foo, num, bool) <- parsed){

 println(foo * num + " " + bool.value)

}

def run(foo: String, num: Int = 2, bool: Flag) = {

 println(foo * num + " " + bool.value)

}

ParserForMethods(

 Seq(

 MainData(

 name = "run",

 argSigs0 = Seq(

 ArgSig[String](Some("foo"), default = None),

 ArgSig[Int](Some("num"), default = Some(2)),

 ArgSig[Flag](Some("bool"), default = None),

),

 invoke = {

 case Seq(foo: String, num: Int, bool: Boolean) =>

 this.run(foo, num, bool)

 }

)

)

).runOrExit(args)

In fact, if you look at the generated code for mainargs on the right, it is just as
complicated as the example code from Scopt I showed you earlier, on the left. It’s
actually almost exactly the same data structure, just spelled a bit differently! Mainargs’
value is not being simpler than the alternative; if anything, these additional macro
transformations make it even less simple. The point of mainargs is to make things
easy, which means we bundle up all this verbose data structure definition into a thin
macro facade that does what a user probably wants

3.2 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

Those two examples illustrate what I mean by *Easy*: going the extra mile, taking on
extra complexity, to fit closely with what a user is already familiar with and what they
want to do. Even if that means making the library less simple: with mutable state,
macros, etc.

com.lihaoyi libraries aim to be easy, not simple.

3.3 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

Next, let’s look at *Boring*

3.3 Boring Scala

A lot of Scala projects have traditionally been extremely ambitious.

3.3 Boring Scala

Distributed Computing Architectures of the Future

Novel Functional Programming Paradigms

Creative DSLs

Research-worthy Innovations

3.3 Boring Scala JSON/Binary Serialization

HTTP Clients/Servers

HTML Generation

Parsing

Filesystem/Subprocess Operations

Pretty-printing

CLI Argument Parsing

Build Tooling

Distributed Computing Architectures of the Future

Novel Functional Programming Paradigms

Creative DSLs

Research-worthy Innovations

When compared to the com.lihaoyi projects, there’s a stark difference: the com.lihaoyi
projects are *boring*!

While the projects on the left are the kind you may give keynote conference
presentations about, the projects on the right are the kind you would add to your build
file, use, and forget about. And that’s intentional!

3.3 Boring Scala JSON/Binary Serialization

HTTP Clients/Servers

HTML Generation

Parsing

Filesystem/Subprocess Operations

Pretty-printing

CLI Argument Parsing

Build Tooling

Distributed Computing Architectures of the Future

Novel Functional Programming Paradigms

Creative DSLs

Research-worthy Innovations

One way I like thinking about this is that traditional Scala projects have often been
Cathedrals: huge efforts, aesthetically beautiful, doing amazing things nobody thought
was possible.

But being a cathedral also has its downsides. If I want a small house to stay in, or a
bridge, or a grain silo, having a huge cathedral is a poor fit. You also can’t mix two
cathedrals together.

That’s always been the problem with Scala: if you want super-high-concurrency
low-latency distributed computation, then Akka is perfect. If you want to write
pure-functional referentially-transparent code, then one of the FP frameworks is a
great fit. If you want anything else, you’re out of luck. And you can’t mix these options:
you’re not going to use Akka in your SBT build definition, or use Cats-Effect in your
Akka streams, etc.

3.3 Boring Scala JSON/Binary Serialization

HTTP Clients/Servers

HTML Generation

Parsing

Filesystem/Subprocess Operations

Pretty-printing

CLI Argument Parsing

Build Tooling

Distributed Computing Architectures of the Future

Novel Functional Programming Paradigms

Creative DSLs

Research-worthy Innovations

The com.lihaoyi libraries aim to be bricks. Boring, uninteresting, but solid and reliable.
And you’re *meant* to combine them together to build things, bricks don’t have an
opinion on what you are building. Whether you’re building a house or a bridge or a
grain silo, or even another cathedral, you can use bricks.

com.lihaoyi libraries are meant to be usable everywhere. You can use Scalatags to
render HTML in your personal blog/static-site generator, in your Akka/Play backend
server, or you can use it to render HTML in HTTP4S. You can use the Ammonite
REPL to test your Akka code or your Cats code or to test your ZIO code. You can use
uPickle to serialize data in your Mill build file, in your one-off research project or you
can use it for your 10,000 QPS API server.

3.3 Boring Scala JSON/Binary Serialization

HTTP Clients/Servers

HTML Generation

Parsing

Filesystem/Subprocess Operations

Pretty-printing

CLI Argument Parsing

Build Tooling

Distributed Computing Architectures of the Future

Novel Functional Programming Paradigms

Creative DSLs

Research-worthy Innovations

com.lihaoyi libraries don’t care where they are used, and aim to be friendly with
everyone and integrate nicely into whatever framework or style you may be using.
They aim to be bricks: boring, to be used without comment or controversy, quietly
supporting some of the load or complexity while staying out of the limelight

3.3 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

3.4 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

The last point to touch on, is “Fast”. The com.lihaoyi ecosystems aim to be Fast.

Not the *Fastest*. There will always be someone willing to run one more profile,
implement one more optimization, bash one more bit. But JVM performance is great.
People build huge systems in Python and Ruby, that are reasonably snappy, despite
the languages and runtimes being 1-2 orders of magnitude slower than bytecode
running on the JVM. Apart from some core limitations like memory footprint and
warmup time, Scala running on the JVM has no excuse to be slow

3.4.2 Aiming for Second Best

Template Engine Renders/60s

Scalatags 7436041

scala-xml 3794707

Twirl 1902274

Scalate-Mustache 500975

Scalate-Jade 396224

Parser Parses/60s

Circe 332

play-json 227

Fastparse JSON 160

Argonaut 149

Json4S 101

Scala-Parser-Comb… 0.9

Here is a rough collection of benchmarks that illustrates this philosophy:

1. Bottom left, we can see uPickle’s rough performance, not at the top of the
benchmark, but definitely in the upper half among other JSON libraries

2. Top right, we can see the performance of Fastparse’s example JSON parser. It
is competitive to hand-crafted hand-optimized parsers, even though it’s not the
top. Notably, it’s over 150 times faster than the equivalent JSON parser written
using Scala-Parser-Combinators. Which shows what can easily happen for
libraries that do not care about performance at all

3. Bottom right, we can see the performance of the Scalatags templating engine:
a few times faster than scala-xml/twirl and 15-20 times faster than Scalate
templates

Some of these benchmarks are recent, while others are a bit out of date. But the point
here is that while com.lihaoyi libraries are not top dog in terms of performance, they
aim to perform pretty well, and generally do. Well enough that “the library is slow” is
generally not going to be an issue in the systems you use them in

3.4.3 Fast is Easy, Fast is Boring

Having fast tools and libraries is good, even if you do not care about performance.

In fact, having fast building blocks is often what *lets* you not care about
performance!

3.4.3 Fast is Easy, Fast is Boring

1. Fast building blocks means you can spend *less* time caring about perf

If your building blocks are slow, performance becomes a problem, and you have to
spend time on fancy algorithms, optimizations, caching, incremental computation,
parallelism, distribution. Maybe you need to swap out your std lib priority queue with a
hand-rolled Van Em Boas data structure from CLRS. This adds a whole bunch of cool,
challenging, interesting work that is exactly what you do not want to care about when
you are trying to add a feature or serve a customer.

Having fast building blocks lets you skip all of this entirely

3.4.3 Fast is Easy, Fast is Boring

1. Fast building blocks means you can spend *less* time caring about perf

2. It means simpler code can still satisfying performance requirements

If your building blocks are fast, often doing the dumb thing is fast enough. Rather than
building a complicated hierarchical caching system for your HTML template partials,
Scalatags is fast enough you can usually just re-render the whole thing every time,
and chrome will crash before your webserver gets perf issues.

3.4.3 Fast is Easy, Fast is Boring

1. Fast building blocks means you can spend *less* time caring about perf

2. It means simpler code can still satisfying performance requirements

3. Fast gives robustness: to poor algorithms, architecture, or configuration

Fast building blocks gives robustness to mistakes. For example, everyone knows
you’re not meant to be serving large static files from your high-QPS web and API
servers. If you start serving huge binary blobs from your Python webservers, things
are going to fall down hard. If you’re serving huge binary blobs from your Cask
webservers, from experience things can keep chugging along remarkably well, and
rather than an “outage” you instead have a roadmap item to “optimize static file
serving by end of quarter” or even “end of year”

3.4.3 Fast is Easy, Fast is Boring

1. Fast building blocks means you can spend *less* time caring about perf

2. It means simpler code can still satisfying performance requirements

3. Fast gives robustness: to poor algorithms, architecture, or configuration

4. It means you can go from prototype to production without a massive rewrite

Fast building blocks means fewer rewrites. Rather than building your language
prototype in scala-parser-combinators and then re-writing it as hand-rolled recursive
descent after, you can just use FastParse once and be done with it.

Fast is easy, fast is boring. In the case of com.lihaoyi tools and libraries, being fast is
not something that is done at the *expense* of ease of use, but is done to *enhance*
it. The less developers have to deal with performance issues in their underlying
building blocks, the more they can spend their time and energy on the actually
problem that they are trying to solve.

3.4 Principles of the com.lihaoyi ecosystem

Executable Scala Pseudocode that’s Easy, Boring and Fast!

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

For the last section of this talk, we will explore the Mill build tool.

Mill is a build tool that uses these principles to make the experience of configuring
your build a pleasant one. Users like complaining about build tools: about Maven,
about Gradle, about SBT. But users generally have nice things to say about Mill! We
will dive into how Mill works, and how it use Scala as Executable Pseudocode to let
you define your build in a way that is easy, boring, and fast.

Mill is probably one of the most mature alternatives to SBT today. All the projects in
the com.lihaoyi ecosystem have been developed, built, and published using Mill for
over half a decade. Coursier, which you all use to resolve and download third-party
dependencies, is built using Mill. Scala-CLI is built using Mill. I personally haven’t
touched SBT for more than 5 years now. Mill works *great*, and now we’ll dive into
why

4.1 Mill as Executable Pseudocode
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

Mill lets you define your project’s sub-modules as `object`s: in this case `object foo`
will represent the module in the `foo/` folder, normally with sources in `foo/src/`,
resources in `foo/resources/` and output in subfolders of `out/foo/`.

In this case, we define a new build target called lineCount, that we compute by taking
all the source files and counting how many lines are within them. We then override the
`resources` of the module to include a generated text file containing the line count,
which is written to a `T.dest` folder which (automatically assigned as
`out/foo/resources`)

4.1 Mill as Exec. Pseudocode
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

// foo/src/Foo.scala

object Foo{

 def main(args: Array[String]): Unit = {

 val lineCount = scala.io.Source

 .fromResource("line-count.txt")

 .mkString

 println(s"Line Count: $lineCount")

 }

}

This generated resource file can then be read at runtime, by the source code in the
`foo/src/` folder.

4.1 Mill as Exec. Pseudocode
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

// foo/src/Foo.scala

object Foo{

 def main(args: Array[String]): Unit = {

 val lineCount = scala.io.Source

 .fromResource("line-count.txt")

 .mkString

 println(s"Line Count: $lineCount")

 }

}

$./mill foo.run

Line Count: 10

And you can use `foo.run` to print it out

4.1 Mill as Exec. Pseudocode
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

// foo/src/Foo.scala

object Foo{

 def main(args: Array[String]): Unit = {

 val lineCount = scala.io.Source

 .fromResource("line-count.txt")

 .mkString

 println(s"Line Count: $lineCount")

 }

}

$./mill foo.run

Line Count: 10

$./mill show foo.lineCount

10

`foo.show` to print out the value of any specified intermediate target

4.1 Mill as Exec. Pseudocode
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

// foo/src/Foo.scala

object Foo{

 def main(args: Array[String]): Unit = {

 val lineCount = scala.io.Source

 .fromResource("line-count.txt")

 .mkString

 println(s"Line Count: $lineCount")

 }

}

$./mill foo.run

Line Count: 10

$./mill show foo.lineCount

10

$./mill inspect foo.lineCount

foo.lineCount(build.sc:6)

 Total number of lines in module's source files

Inputs:

 foo.allSourceFiles

Or `inspect` to see the metadata information of a particular build target

This is a synthetic example, but it is enough to give you an idea of how Mill works. In
Mill, you write more-or-less plain Scala code: you have objects that extend traits,
method defs that call or override other method defs, super, and so on. That’s all Mill
needs to schedule them to be built in the right order, automatically caching things,
invalidating, parallelizing, and letting you inspect the build to debug it. For example, if
I don’t edit any source files, my lineCount computation here will not be re-evaluated
unnecessarily.

These things don’t matter so much for a toy example, but become much more
important when the size and complexity of the build grows. For example, in large SBT
builds it’s very common for people being puzzled why it’s slow, and why certain tasks
are being re-executed even when nothing material changed, or why one task causes
another to be run. That confusion generally does not happen in Mill.

4.1 Mill as Exec. Pseudocode
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

import sbt._, Keys._

lazy val lineCount = taskKey[Int](

 "Total number of lines in module's source files"

)

lazy val foo = project.in(file("."))

 .settings(

 name := "foo",

 scalaVersion := "2.13.8",

 lineCount := {

 val srcFiles = (Compile / sources).value

 srcFiles.map(f => IO.readLines(f).size).sum

 },

 Compile / resource += {

 val dest = (Compile / resourceManaged).value

 val count = lineCount.value

 val lineCountFile = dest / "line-count.txt"

 IO.write(lineCountFile, count.toString)

 lineCountFile

 }

)

One thing that’s worth mentioning is how this compares to the equivalent SBT build.

The SBT code contains most of the same concepts. However, the same concept - e.g.
defining namespaces, defining values, etc. - look very different in the SBT build on the
right when compared to the Mill example on the left, and very different from what you
would expect to see in “normal” Scala code.

1. Rather than `object`s, we have `(project in file).settings`s.
2. Rather than `def lineCount =`, we need to do `lazy val lineCount = taskKey`

and then `lineCount :=` later.
3. Rather than normal scaladoc comments, we need to put the lineCount

documentation as a string

We can see from this that it’s not the conciseness or verbosity that makes or breaks
executable pseudocode: the SBT example is marginally more verbose than the Mill
example, but not terribly so. Rather, it is the fact that SBT code - while nominally
Scala - does not look like any Scala code you would write anywhere else. Mill code,
does.

As a Scala developer, you already know how objects, traits, defs, overrides, supers,
and method calls work. Mill takes all that stuff you already know, and then
automatically augments it with all the stuff you probably want in your build pipelines:
caching, parallelism, queryability, etc. That’s why Mill code looks so familiar, especially
compared to other build tools like SBT or Gradle; it’s executable pseudocode!

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

Many people have commented that Mill is not *Simple*. And it’s true: Mill aims to be
Easy, not *Simple*. In order to give the seamless “write what you think, we’ll take
care of the rest” experience shown earlier, Mill has to jump through a *lot* of hoops!
Let’s go through some of them

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 }

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

$./mill inspect foo.lineCount

foo.lineCount(build.sc:6)

 Total number of lines in module's source files

Inputs:

 foo.allSourceFiles

First, `T{}` blocks with `()` inside are macros, that expand into a `new Target` with a
`zipMap` call, effectively turning the direct-style code into a free applicative. This free
applicative graph structure gives us the scheduling, parallelizability, introspectability,
and other things that people want from their build tool.

 For example, you can easily use `mill inspect` to list out dependencies,

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 }

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

$./mill inspect foo.lineCount

foo.lineCount(build.sc:6)

 Total number of lines in module's source files

Inputs:

 foo.allSourceFiles

$./mill path foo.run foo.lineCount

foo.lineCount

foo.resources

foo.localClasspath

foo.runClasspath

foo.run

`mill path` to find how one target depends on another, and so on.

All these are things that you cannot do with the callgraph of “normal” code.

`T{}` is a macro. People say these macro transformations are not simple, and it’s true:
they’re not. But it does make things *easier*.

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 @Scaladoc("Total number of lines in module's source files")

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 },

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

$./mill inspect foo.lineCount

foo.lineCount(build.sc:6)

 Total number of lines in module's source files

Inputs:

 foo.allSourceFiles

We also use a compiler plugin to save the Scaladoc as an annotation, that we then
fish out later using Java reflection. This is what lets us print out the Scaladoc when
you inspect things from the command line.

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 @Scaladoc("Total number of lines in module's source files")

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 },

 line = sourcecode.Line(6),

 fileName = sourcecode.FileName("build.sc")

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

$./mill inspect foo.lineCount

foo.lineCount(build.sc:6)

 Total number of lines in module's source files

Inputs:

 foo.allSourceFiles

We use implicit macros from the com.lihaoyi:sourcecode library to inject the line
number and file name, so when you `inspect` the target at the command line you can
see where it is defined.

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule(path = outer.path / "foo") {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 @Scaladoc("Total number of lines in module's source files")

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 },

 line = sourcecode.Line(6),

 fileName = sourcecode.FileName("build.sc"),

 path = foo.path / "lineCount"

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 Ssuper.resources() ++ eq(PathRef(T.dest))

 }

}

$./mill foo.run

Line Count: 10

$./mill show foo.lineCount

10

Next, we use implicits macros to grab the name of the `object`s and `def`. That is how
Mill knows that the `foo.run` or `foo.lineCount` commands correspond to those
modules and targets,

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule(path = outer.path / "foo") {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 @Scaladoc("Total number of lines in module's source files")

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 },

 line = sourcecode.Line(6),

 fileName = sourcecode.FileName("build.sc"),

 path = foo.path / "lineCount"

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

$./mill foo.run

Line Count: 10

$./mill show foo.lineCount

10

foo/src/Foo.scala

out/foo/lineCount.json

{

 "value": 10,

 "valueHash": 1291200293,

 "inputsHash": 1717538688

}

And that they should read sources from the `foo/` folder and output their caches and
other metadata in the `out/foo/` folder e.g. `out/foo/lineCount.json`

import mill._, scalalib._

object foo extends ScalaModule(path = outer.path / "foo") {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 @Scaladoc("Total number of lines in module's source files")

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 },

 line = sourcecode.Line(6),

 fileName = sourcecode.FileName("build.sc"),

 path = foo.path / "lineCount",

 readWriter = upickle.default.readwriter[Int]

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

4.2 Mill is Easy, not Simple

Lastly, we use implicits to resolve a upickle.default.ReadWriter, that is used to cache
things on disk. This means if we don’t keep a persistent Mill process open, a future
Mill process is still able to pick things up from the cache where the past Mill process
left off.

4.2 Mill is Easy, not Simple
import mill._, scalalib._

object foo extends ScalaModule {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 def lineCount = T{

 allSourceFiles().map(f => os.read.lines(f.path).size).sum

 }

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}

import mill._, scalalib._

object foo extends ScalaModule(path = outer.path / "foo") {

 def scalaVersion = "2.13.8"

 /** Total number of lines in module's source files */

 @Scaladoc("Total number of lines in module's source files")

 def lineCount = new Target(

 T.zipMap(Seq(allSourceFiles)) { case Seq(allSourceFiles) =>

 allSourceFiles.map(f => os.read.lines(f.path).size).sum

 },

 line = sourcecode.Line(6),

 fileName = sourcecode.FileName("build.sc"),

 path = foo.path / "lineCount",

 readWriter = upickle.default.readwriter[Int]

)

 /** Generate resources using lineCount of sources */

 override def resources = T{

 os.write(T.dest / "line-count.txt", "" + lineCount())

 super.resources() ++ Seq(PathRef(T.dest))

 }

}Overall, if you look at the thing on the right, the transformations that let Mill do what it
does are certainly not *Simple*: java reflection, compiler plugins, implicits, macros,
implicit macros.

However, all this complexity is towards one purpose: to make life *Easy* for the
person configuring the build! To them, they just need to write their Scala code as it
were pseudocode from an intro-to-Scala class - with objects, traits, and defs. Methods
that call other methods. Override and super. All the other “stuff” around build tooling -
incremental computation, caching, parallelism, introspectability, and so on is done
for them, rather than *by* them. Mill uses its complexity budget to ensure there’s
fewer things that a user would need to care about, rather than *more*.

4.3 Mill is Fast

./mill -j 6 __.compile

Lastly, Mill makes it very easy to make your builds fast via parallelism. You can pass
in how many parallel jobs you want, e.g. -j 6 gives you 6 parallel jobs

4.3 Mill is Fast

./mill -j 6 __.compile # out/mill-chrome-profile.json

Mill will then run everything using 6 threads, scheduling things appropriately in
dependency order, while generating a nice profile you can load into chrome to see
where your time is being spent.

This makes it easy to see where the bottlenecks are: e.g. the blue segment in the
top-middle which is running alone after all the segments on the left run in parallel, and
needs to complete before all the segments on the right run in parallel.

While Mill goes to great efforts to make its own internal implementation reasonably
fast, in any build tool the bottleneck often is the user-defined build steps or build
actions. Mill makes it easy to triage the performance of your build, so you can figure
out what parts of your own Mill build are slow, and do something about it.

1. What is the com.lihaoyi ecosystem?

2. What is the com.lihaoyi ecosystem not?

3. Principles of the com.lihaoyi ecosystem

4. Case Study: How Mill Makes Builds Great

Executable Scala Pseudocode that’s Easy, Boring and Fast!

com.lihaoyi, Executable Scala Pseudocode that’s Easy, Boring and Fast!

Now for some parting references.

com-lihaoyi Github Organization: https://github.com/com-lihaoyi

● #com-lihaoyi on the Scala Discord

com.lihaoyi, Executable Scala Pseudocode that’s Easy, Boring and Fast!

If any of you want to look at these libraries and try them out, they are all available
under the github.com/com-lihaoyi github organization. These are open source
projects, and we always need more contributors helping to use, improve and maintain
these libraries. Even if you are already using Cats or Akka or ZIO or something else,
these small libraries can fit right in

https://github.com/com-lihaoyi

com-lihaoyi Github Organization: https://github.com/com-lihaoyi

● #com-lihaoyi on the Scala Discord

Hands-on Scala Programming https://www.handsonscala.com/

● Code Examples https://github.com/handsonscala/handsonscala

com.lihaoyi, Executable Scala Pseudocode that’s Easy, Boring and Fast!

If anyone wants a more structured way of learning about these tools and libraries, you
can check out my book Hands-On Scala Programming, at www.handsonscala.com.
This book is a systematic tour of how to use the Scala - supported by the com.lihaoyi
ecosystem - to build a lot of projects with real-world applicability. While other Scala
books might have you re-implementing linked lists and fibonacci functions, Hands-on
Scala has you implementing parallel web-crawlers, realtime web-sites, networked
Scala applications, programming language interpreters, and many other things that
your employer may pay real money for you to do.

The book’s example projects are available for free online. Even without the book, this
is a great resource for the question of “how do I do X” using the com.lihaoyi
ecosystem libraries. All 143 examples are free online, complete with test suites

https://github.com/com-lihaoyi
https://www.handsonscala.com/
https://github.com/handsonscala/handsonscala

com-lihaoyi Github Organization: https://github.com/com-lihaoyi

● #com-lihaoyi on the Scala Discord

Hands-on Scala Programming https://www.handsonscala.com/

● Code Examples https://github.com/handsonscala/handsonscala

Mill Build Tool https://github.com/com-lihaoyi/mill

com.lihaoyi, Executable Scala Pseudocode that’s Easy, Boring and Fast!

Lastly, if anyone here does *not* like SBT, you should take some time to try out the
Mill build tool. We just released version 0.11.0, with a ton of improvements by both
myself and other contributors. People like saying that SBT is a problem, confusing
newbies and veterans alike, and holding Scala back from widespread adoption. But
there is an alternative to SBT - It’s Mill - and many of us have been using Scala
without SBT for years now. You all should try it out and see how great the post-SBT
world is!

https://github.com/com-lihaoyi
https://www.handsonscala.com/
https://github.com/handsonscala/handsonscala
https://github.com/com-lihaoyi/mill

