
Four facets of good open
source libraries

Bay Scala, 28 April 2017
haoyi.sg@gmail.com

Agenda
Four facets of good open source libraries

Not specific to any particular library or field

Hopefully useful if you want to build one in future

About me
Previously software engineer at Dropbox

Currently at Bright technologies (www.bright.sg)

- Data-science/Scala consulting

- Fluent Code Explorer (www.fluentcode.com)

Early contributor to Scala.js, author of Ammonite REPL, Scalatags, FastParse, ...

haoyi.sg@gmail.com, www.lihaoyi.com, @li_haoyi on Twitter, @lihaoyi on Github

http://www.bright.sg
http://www.fluentcode.com
https://github.com/lihaoyi/Ammonite
https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/fastparse

About me: Libraries I’ve Written
https://github.com/lihaoyi/Ammonite

https://github.com/lihaoyi/utest

https://github.com/lihaoyi/scalatags

https://github.com/lihaoyi/fastparse

https://github.com/lihaoyi/autowire

https://github.com/lihaoyi/upickle-pprint

https://github.com/lihaoyi/sourcecode

https://github.com/lihaoyi/Ammonite
https://github.com/lihaoyi/Ammonite
https://github.com/lihaoyi/Ammonite
https://github.com/lihaoyi/utest
https://github.com/lihaoyi/utest
https://github.com/lihaoyi/utest
https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/scalatags
https://github.com/lihaoyi/fastparse
https://github.com/lihaoyi/fastparse
https://github.com/lihaoyi/fastparse
https://github.com/lihaoyi/autowire
https://github.com/lihaoyi/autowire
https://github.com/lihaoyi/autowire
https://github.com/lihaoyi/upickle-pprint
https://github.com/lihaoyi/upickle-pprint
https://github.com/lihaoyi/upickle-pprint
https://github.com/lihaoyi/sourcecode
https://github.com/lihaoyi/sourcecode
https://github.com/lihaoyi/sourcecode

Goals of an open-source library

Goals of an “open-source library”
Make a library you use

Make a library your friends & colleagues use

Make a library complete strangers use

Non-goals of an “open-source library”
Answer lots of questions

Talk to lots of people

Build a community

Library vs Community

Library vs Community

What a user wants from a Library

What a user wants from a Library
Use your library without reading docs

Learn without talking to a human (i.e. you)

Have the library cater to him when he’s new

Have the library cater to him when he’s an expert

Fix a specific problem in his project you’ve never seen

Four facets of good open source libraries

Four facets of good open source libraries
Intuitiveness: use library w/o reading docs

Layering: cater to users both newbie and expert

Documentation: learn w/o talking to a human

Shape: fix a problem in a project you’ve never seen

Four facets of good open source libraries
Intuitiveness

Layering

Documentation

Shape

What does it mean to be intuitive?
You can use a library without looking up docs

What does it mean to be intuitive?

What does it mean to be intuitive?
You can use a library without looking up docs

In [1]: import requests

In [2]: r = requests.get('https://api.github.com/events')

In [3]: r.json()

What does it mean to be intuitive?
You can use a library without looking up docs

In [1]: import requests

In [2]: r = requests.get('https://api.github.com/events')

In [3]: r.json()

[{'actor': ...,

 'created_at': '2017-04-08T09:06:34Z',

 'id': '5651890323',

 'payload': {'action': 'started'},

 'public': True,

 'repo': {'id': 87593724,

 'name': 'davydovanton/web_bouncer',

 'url': 'https://api.github.com/repos/davydovanton/web_bouncer'},

 'type': 'WatchEvent'},

What does it mean to be intuitive?

Matt DeBoard—

I'm going to get `@kennethreitz <https://twitter.com/kennethreitz>`_'s Python requests module tattooed

on my body, somehow. The whole thing.

Intuition is Consistency

r = requests.get('https://api.github.com/events')

r = requests.post('https://api.github.com/events')

GET /events

HTTP/1.1

Host: api.github.com

r = json.loads('{"hello": "world"}')

Intuition is Consistency

Your Library

Self

Other Libraries

Underlying Model

FastParse Consistency

val either = P("a".rep ~ ("b" | "c" | "d") ~ End)

val Parsed.Success(_, 6) = either.parse("aaaaab")

Self

Other Libraries

Underlying Model

val either = rep("a") ~ ("b" | "c" | "d")

val result = Parsers.parseAll(either, "aaaaab")

either = "a"* ("b" | "c" | "d") ;val option = P("c".? ~ "a".rep(sep="b").! ~ End)

SBT In-consistency

sourceGenerators in Compile += Def.task {

 ...

}.taskValue

Self

Other Libraries

Underlying Model

name := "Hello",

libraryDependencies += derby

val file = new File(canonicalFilename)

val bw = new BufferedWriter(new FileWriter(file))

bw.write(text)

bw.close()

.

├── LICENSE

├── build.sbt

├── fansi/shared/src

│ ├── main/scala/fansi

│ │ └── Fansi.scala

│ └── test/scala/fansi

│ └── FansiTests.scala

Partial Consistency

get {

 ...

} ~

post {

 entity(as[Order]) { order =>

 complete {"Order received"}

 }

}

Self

Other Libraries

Underlying Model

GET /about redirect(to = "https://test.com/")

GET /orders notFound

GET /clients error

GET /posts todo

Partial Consistency

os.chdir(path)

os.getcwd()

os.chown(path, uid, gid)

os.listdir(path='.')

os.lstat(path, *, dir_fd=None)

os.mkdir(path, mode=0o777)

Self

Other Libraries

Underlying Model

int chown(const char *pathname, uid_t owner, ...);

int lstat(const char *restrict path, ...);

Intuition is Consistency

Your Library

Self

Other Libraries

Underlying Model

Consistency is relative to your user’s
existing experiences

User’s expectations come from
multiple sources often contradictory

Make trade-offs consciously

Four facets of good open source libraries
Intuitiveness

Layering

Documentation

Shape

Layering your Library

Layering your Library
Do you provide a simple API for people to get started with?

Do you provide a powerful, complex API for power users to make use of?

Why not both?

Expert API

- Configurability and “power” matters the most here
- Discoverability no longer matters so much

Newbie API
- Simple to get started with, discoverability is paramount
- Requires no configuration

Intermediate API

- Doesn’t need to be quite as simple, user already knows basics
- Probably need some configuration for their project

Layered APIs

Beginner API

In [1]: import requests

In [2]: r = requests.get('https://api.github.com/events')

Intermediate API

In [3]: r = requests.post("http://httpbin.org/get",

 headers={'user-agent': 'my-app/0.0.1'},

 data={'key1': 'value1', 'key2': 'value2'}

)

Advanced API

In [4]: s = requests.Session()

In [5]: s.auth = ('user', 'pass')

In [6]: s.headers.update({'x-test': 'true'})

In [7]: r = s.get('http://httpbin.org/headers', headers={'x-test2': 'true'})

Streaming API

In [8]: r = requests.get('http://httpbin.org/stream/20', stream=True)

Layered APIs

https://api.github.com/events

Request-Level API

import akka.actor.ActorSystem

import akka.http.scaladsl.Http

import akka.http.scaladsl.model._

import akka.stream.ActorMaterializer

import scala.concurrent.Future

implicit val system = ActorSystem()

implicit val materializer = ActorMaterializer()

val responseFuture: Future[HttpResponse] =

 Http().singleRequest(HttpRequest(uri = "http://akka.io"))

Host-Level API

...

Insufficiently Layered APIs

Messy Imports; part of
your public API

Mysterious incantations a
newbie doesn’t care about

What a newbie actually wants

http://akka.io

Beginner API

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

if __name__ == "__main__":

 app.run()

Intermediate API

...

Layered APIs

import akka.actor.ActorSystem

import akka.http.scaladsl.Http

import akka.http.scaladsl.model._

import akka.http.scaladsl.server.Directives._

import akka.stream.ActorMaterializer

import scala.io.StdIn

object WebServer {

 def main(args: Array[String]) {

 implicit val system = ActorSystem("my-system")

 implicit val materializer = ActorMaterializer()

 // needed for the future flatMap/onComplete in the end

 implicit val executionContext = system.dispatcher

Insufficiently Layered APIs

Messy Imports; part of
your public API

Mysterious incantations a
newbie doesn’t care about

 val route =

 path("hello") {

 get {

 complete(HttpEntity(ContentTypes.`text/html(UTF-8)`,

 "<h1>Say hello to akka-http</h1>")

)

 }

 }

 val bindingFuture = Http().bindAndHandle(route, "localhost", 8080)

 println(s"Server online at http://localhost:8080/\nPress RETURN to stop...")

 StdIn.readLine() // let it run until user presses return

 bindingFuture.flatMap(_.unbind()).onComplete(_ => system.terminate())

 }

}

Intermediate API

Insufficiently Layered APIs

Beginner API

import akka.http.scaladsl.model.{ContentTypes, HttpEntity}

import akka.http.scaladsl.server.Directives._

import akka.http.scaladsl.server.{HttpApp, Route}

import akka.http.scaladsl.settings.ServerSettings

import com.typesafe.config.ConfigFactory

object WebServer extends HttpApp {

 def route: Route = path("hello") {

 get {

 complete(HttpEntity(ContentTypes.`text/html(UTF-8)`, "<h1>Say hello to akka-http</h1>"))

 }

 }

}

WebServer.startServer("localhost", 8080, ServerSettings(ConfigFactory.load))

Intermediate API

Layered APIs

Layering
Simple code for newbies

Advanced features for experts

Expert API

- Configurability and “power” matters the most here
- Discoverability no longer matters so much

Newbie API
- Simple to get started with, discoverability is paramount
- Requires no configuration

Intermediate API

- Doesn’t need to be quite as simple, user already knows basics
- Probably need some configuration for their project

Four facets of good open source libraries
Intuitiveness

Layering

Documentation

Shape

Documentation is a Feature

Documentation is a Feature
Mediocre library w/ good docs vs. Amazing library w/ poor docs

- Looks the same from the outside

Most of your users do not want to talk to you

- You probably do not want to talk to most of your users either

Proportional Documentation

Proportional Documentation: FastParse
find fastparse -name "*.scala" | grep main | xargs wc -l

 1987 total

find fastparse -name "*.scala" | grep test | xargs wc -l

 1957 total

find . -name "*.scalatex" | xargs wc -l

 2143 total

Proportional Documentation

Proportional Documentation
Main code is the stuff that runs

Test code makes sure Main code
does what it should

Docs make sure people can learn
how to use it

All are important to the goal of “Make
a library complete strangers use”

Intro Topics
- What is this library?
- Why should I care?

Intermediate Topics

- I have been using this library for a while.
- What are the problems I will face?

Advanced Topics

- I am an expert in the library.
- How does its internals work?
- Why was it built in this way?

Newbie Topics

- I want to use this library. How?

Layered
Documentation

Intro Topics
FastParse is a parser-combinator library for Scala that lets you quickly
and easily write recursive descent text- and binary data parsers in
Scala

Intermediate Topics

While for super-high-performance use cases you may still want a
hand-rolled parser, for many ad-hoc situations a FastParse parser
would do just fine.

Advanced Topics

FastParse is designed as a fast, immutable interpreter. That means It
does not do significant transformations of the grammar. The structure
of the parser you define is the structure that will run.

Newbie Topics

The simplest parser matches a single string:
val parseA = P("a")
val Parsed.Success(value, successIndex) = parseA.parse("a")

http://www.lihaoyi.com/fastparse/#WritingParsers
http://www.lihaoyi.com/fastparse/#ByteParsers

Intro Topics
ScalaTags is a small, fast XML/HTML/CSS construction library for
Scala that takes fragments in plain Scala code that look like...

Intermediate Topics

If you wish to, it is possible to write code that is generic against the
Scalatags backend used, and can be compiled and run on both Text
and JsDom backends at the same time! This is done by...

Advanced Topics

Scalatags has pretty odd internals in order to support code re-use.
Essentially, each Scalatags package is an instance of
trait Bundle[Builder, Output <: FragT, FragT]{...}

Newbie Topics

This is a bunch of simple examples to get you started using Scalatags.

body(h1("This is my title"), ...)

http://www.lihaoyi.com/scalatags/#Performance
http://www.scala-lang.org/
http://www.scala-lang.org/

Incorrectly Layered Docs

Bad Newbie Topics (Old SBT Getting Started)
After examining a project and processing any build definition files, sbt will end up with an immutable map (set of key-value
pairs) describing the build.

Build definition files do not affect sbt's map directly.

Instead, the build definition creates a huge list of objects with type Setting[T] where T is the type of the value in the map.
(Scala's Setting[T] is like Setting<T> in Java.) A Setting describes a transformation to the map, such as adding a new
key-value pair or appending to an existing value. (In the spirit of functional programming, a transformation returns a new
map, it does not update the old map in-place.)

In build.sbt, you might create a Setting[String] for the name of your project like this:

name := "hello"

This Setting[String] transforms the map by adding (or replacing) the name key, giving it the value "hello". The transformed
map becomes sbt's new map.

Good Newbie Topics (New SBT Getting Started)
A build definition is defined in build.sbt, and it consists of a set of projects (of type Project). Because the term project
can be ambiguous, we often call it a subproject in this guide.

For instance, in build.sbt you define the subproject located in the current directory like this:

lazy val root = (project in file("."))

 .settings(

 name := "Hello",

 scalaVersion := "2.12.1"

)

Each subproject is configured by key-value pairs.

For example, one key is name and it maps to a string value, the name of your subproject.

http://www.scala-sbt.org/0.13/api/sbt/Project.html

Layered Documentation
Quantity of documentation is not all that
matters

Structure is equally important

Documentation in wrong place, e.g. internal
implementation details in newbie area, is
actively harmful

Four facets of good open source libraries
Intuitiveness

Layering

Documentation

Shape

Library Shape

Database
Access

json

File
IO

HTTP

A library’s API and functionality can
be thought of as a “shape”

Each library covers a different portion
of the space of possible problems

Library Shape

Database
Access

json

File
IO

HTTP

Thing you are
paid $$$ to build

Library Shape

Library Shape

Glue Code

Library Shape

Library Shape

Failure Mode: Utopia Library

Utopia

Failure Mode: Utopia Library

Utopia

Failure Mode: Utopia Library

Utopia

Failure Mode: Glue Library

MiscUtils

Failure Mode: Glue Library

Library Shape

Utopia
MiscUtils

More self-Consistent More problem-specific

Library Shape
Balance being generic/elegant with being problem-specific

Think about how your library fits into a larger project

Conclusion

What a user wants from a Library
Use your library without reading docs

Learn without talking to a human (i.e. you)

Have the library cater to him when he’s new

Have the library cater to him when he’s an expert

Fix a specific problem in his project you’ve never seen

Intuitiveness

Layering

Documentation

Shape

Four facets of good open source libraries

Your Library

Self

Other Libraries

Underlying Model

Intermediate API

Newbie API

Beginner API

Newbie Topics

Intermediate Topics

Advanced Topics

Beginner Topics

Four facets of good open
source libraries

Bay Scala, 28 April 2017
haoyi.sg@gmail.com

